
Oct 18, 2016

Coopengo: 
How Tryton is customized to 

empower Coog

Jean Cavallo
Ali Kefia

1



Oct 17, 2016

Our story with Tryton

● Tryton is a very good platform for developers
● Focus on vertical from the first day
● Good practices for developers (easy to drive projects)
● Modularity is helpful to separate concerns (different business lines)
● So many helpful features (internationalization, rights, etc.)

● But Tryton is sometimes hard to operate
● No practices to deploy / monitor / scale
● No simple process to analyze performance issues
● Hard to understand low level code (getters, python-sql, etc.)

● Coopengo experienced difficulties last year to ramp up Coog as a main 
backoffice application for a team of 50 users

But of course we still love Tryton

2



Oct 17, 2016

Problems we faced

● Limited to a single process server (3.8)

● Too much server calls (heavy activity)
● Surely due to our model (on_change, function fields)
● But also sometimes for hidden configuration (storing column 

width in server)

● Some server calls take long time
● Heavy processing for rating
● Many intermediate records to save (design problems)
● Some low level bottlenecks discovered

3



Oct 17, 2016

Problems we faced (example)

4



Oct 17, 2016

Solutions

● Tools
● debug module
● performance analyzer

● Deployment Architecture
● Redis as a shared cache
● Nginx as a load balancer

5



Oct 17, 2016

Solutions - Tools

● Debug Module
● record exploration, arbitrary code evaluation
● model introspection
● utilities (PYSON conversion…)
● editor hooks

● Perf-Analyzer
● logs rpc calls and db accesses per session
● extra logs on db (sql on specific db calls - > 1 sec)
● extra logs on rpc call (profile the call from dispatcher)
● based on user (production ready with minimum overhead)

6



Oct 17, 2016

Solutions - Deployment Architecture

7

JSON 

RPC

JSON 

RPC

REST 

Servers
Clients

Web clients

Rich clients

http

https

Cache

R
everse P

roxy

Batch servers

Web App
Web Services Servers

Database

http

https

http

App servers

AppData



Oct 17, 2016

Solutions - Deployment Architecture

● Redis as a default cache for trytond
● same API as trytond/cache, implem from config
● msgpack to serialize
● some issues with non serializable data (rng)
● modular tryton cache management to avoid fork

● Nginx as load balancer and reverse proxy
● works with Tryton 3.8
● on Tryton >= 4.0

● scales on different servers
● works well with uwsg

● alternative to SSL from Python
● basic security rules

8



Oct 17, 2016

Deployment: Redis

9



Oct 17, 2016

Going further - More on deployment

● On Tryton 4.0, combine uwsgi and nginx to explore more possibilities

● Docker as deployment tool

● easier when dealing with distribution specificities

● industrialization (scripts for update, monitor, etc.)

● All managed via coog-admin

● Tryton to adopt Redis as a cache broker (and move things like session 

to cache)?

● Nginx module for Tryton (log called method from JSON)

10

https://github.com/coopengo/coog-admin


Oct 17, 2016

Going further - Web

● Purpose: nodejs technology for middleware (concurrency, active 

community, etc.)

● Started as a Sao code extraction

● extracted communication / model features

● remove some constraints : mono-session, jquery deps, etc

● Now standalone libraries

● types: datetime convenient constructors

● session: model description, cache, hooks on start/stop

● model: easy API to read, get, save, etc.

11



Oct 17, 2016

Conclusion

● Within Tryton Community, we are missing
● practices (for example django explains how it can be 

deployed on nginx)
● knowledge share (a good configuration for uwsgi: threads / 

processes)
● story telling (that company is using Tryton for 1000 fulltime 

users and it is working well)
● modules store / market place with incentives (stars)

● Very often, you get yourself alone, you experiment things and you 
decide based on an individual context

12


