CoopeNgo

r

Coopengo:
How Tryton is customized to
empower Coog

Oct 18,2016

Jean Cavallo
Ali Kefia

Tryton
Unconference
Barcelona

Tryton

E Our story with Tryton Barcglona

coopengo

e Trytonis avery good platform for developers
e Focus on vertical from the first day
e Good practices for developers (easy to drive projects)
e Modularity is helpful to separate concerns (different business lines)
e So many helpful features (internationalization, rights, etc.)

e But Trytonis sometimes hard to operate
e No practices to deploy / monitor / scale
e No simple process to analyze performance issues
e Hardto understand low level code (getters, python-sq|l, etc.)

e Coopengo experienced difficulties last year to ramp up Coog as a main
backoffice application for a team of 50 users

But of course we still love Tryton

Oct 17,2016 2

Tryton

Unconference
Barcelona
E Problems we faced

coopengo

e Limited to a single process server (3.8)

e Too much server calls (heavy activity)
e Surely due to our model (on_change, function fields)
e But also sometimes for hidden configuration (storing column
width in server)

e Some server calls take long time
e Heavy processing for rating
e Many intermediate records to save (design problems)
e Some low level bottlenecks discovered

Oct 17,2016 3

Problems we faced (example)

coopengo
for record in records:
if (record._transaction '= transaction
or user != record._user
or context !'= record._context):
latter.append(record)
continue
- save_values[record] = record._save_values
= values[record] = record._values
+ save_values[id({record)] = record._save_values
F values[id{record)] = record._values
record._values = None
if record.id is None or record.id < @:
to_create.append(record)
7 - elif save values[record]:
+ elif save values[id{record])]:

to_write.append{record)
transaction = Transaction()
try:
with transaction.set_current_transaction(transaction), \

R T DA RS R e S e e S]

Oct 17,2016 4

E Solutions

coopengo

e Tools
e debug module
e performance analyzer

e Deployment Architecture
e Redis as ashared cache
e Nginx as aload balancer

Oct 17,2016 5

coopengo

Tryton
Unconference
Barcelona

Solutions - Tools

e Debug Module

record exploration, arbitrary code evaluation
model infrospection

utilities (PYSON conversion...)

editor hooks

e Perf-Analyzer

Oct 17,2016

logs rpc calls and db accesses per session

extra logs on db (sgl on specific db calls - > 1 sec)

extra logs on rpc call (profile the call from dispatcher)
based on user (production ready with minimum overhead)

E Solutions - Deployment Architecture

coopengo

Servers _
Clients

App

http
< @Q REST - Web App
https _
redis & Web Services Servers ;
Cache g I
o é
2
Database JSON [P
Py hﬂp @
RPC % - Web clients
— o
—(3
B) - :
PostareSQL
JSON
RPC
- [JOy -
http
App servers NGiNXa coog

GG,

Batch servers

Oct 17,2016 7

Tryton
Unconference

E Solutions - Deployment Architecture b))
coopengo

e Redis as adefault cache for trytond

same API as trytond/cache, implem from config
msgpack to serialize

some issues with non serializable data (rng)
modular tryton cache management to avoid fork

e Nginx asload balancer and reverse proxy
e works with Tryton 3.8
e onTryton>=4.0
e scales on different servers
e works well with uwsg
e alfternative to SSL from Python
e basic security rules

Oct 17,2016 8

Deployment: Redis

coopengo

) git diff --stat 4.0 -- cache*
trytond/cache.py | 110
trytond/cache redis.py | 8@
trytond/cache_utils.py | 68
3 files changed, 227 insertions(+), 31 deletions(-)

(object):
I _cache_instance = []
_client =1 >
_client_check_lock = Lock()

context=

(cls, dbname):

(cls, dbname):

Oct 17,2016

36 #--- 3 lines: if cls._client is pot Nonei-----cvo-remeromaremer e e e

Tryton

Unconference
E Going further - More on deployment =
coopengo

e On Tryton 4.0, combine uwsgi and nginx to explore more possibilities
e Docker as deployment tool

e easier when dealing with distribution specificities

e industrialization (scripts for update, monitor, etc.)

e Allmanaged via coog-admin

e Trytonto adopt Redis as a cache broker (and move things like session
to cache)?

e Nginx module for Tryton (log called method from JSON)

Oct 17,2016 10

https://github.com/coopengo/coog-admin

Tryton

Unconference
E Going further - Web Barcglo

coopengo

e Purpose: nodejs technology for middleware (concurrency, active
community, etc.)
e Started as a Sao code extraction
e extracted communication / model features
® remove some constraints : mono-session, jquery deps, etc
e Now standalone libraries
e fypes: datetime convenient constructors
e session: model description, cache, hooks on start/stop

e model: easy API to read, get, save, etc.

Oct 17,2016 11

Tryton
Unconference
. Barcelona
E Conclusion

coopengo

e Within Tryton Community, we are missing

e practices (for example django explains how it can be
deployed on nginx)

e knowledge share (a good configuration for uwsgi: threads /
processes)

e story telling (that company is using Tryton for 1000 fulltime
users and it is working well)

e modules store / market place with incentives (stars)

e Very often, you get yourself alone, you experiment things and you
decide based on an individual context

Oct 17,2016 12

